
From Big Data to Data Platform

Polyglot persistence

125Enrico Gallinucci – University of Bologna

From Big Data to Data Platform

What we are going to do

• Define polyglot persistence

• Define challenges

• Discuss current solutions and future directions

Enrico Gallinucci – University of Bologna 126

From Big Data to Data Platform

Polyglot persistence

The one-size-fits-all solution

Polyglot persistence

From Big Data to Data Platform

Polyglot persistence

The one-size-fits-all solution

Replaced by the polyglot solution

Polyglot persistence

From Big Data to Data Platform

NoSQL databases

Emerged around the 2010’s, NoSQL databases offer efficient solutions to
specific problems

▪ Mainly distinguished by the supported data model

Model Description Use cases

Key-value Associates any kind of value to a string Dictionary, lookup table, cache, file and images
storage

Document-based Stores hierarchical data in a tree-like
structure

Documents, anything that fits into a hierarchical
structure

Wide-column Stores sparse matrixes where a cell is
identified by the row and column keys

Crawling, high-variability systems, sparse matrixes

Graph Stores vertices and arches Social network queries, inference, pattern matching

Polyglot persistence

From Big Data to Data Platform

NoSQL databases: key-value

Each DB contains one or more collections (corresponding to tables)

Each collection contains a list of key-value pairs
▪ Key: a unique string

▪ E.g.: ids, hashes, paths, queries, REST calls

▪ Value: a BLOB (binary large object)

▪ E.g.: text, documents, web pages,
multimedia files

Looks like a simple dictionary
▪ The collection is indexed by key

▪ The value may contain several information:
one or more definitions, synonyms and
antonyms, images, etc.

Polyglot persistence

From Big Data to Data Platform

NoSQL databases: document-based

Each DB contains one or more collections (corresponding to tables)

Each collection contains a list of documents (usually JSON)
▪ Documents are hierarchically structured

Each document contains a set of fields
▪ The ID is mandatory

Each field corresponds to a key-value pair
▪ Key: unique string in the document

▪ Value: either simple (string, number, boolean)
or complex (object, array, BLOB)

▪ A complex field can contain other field

{
"_id": 1234,
"name": "Enrico",
"age": 33,
"address": {

"city": "Ravenna",
"postalCode": 48124

},
"contacts": [{

"type": "office",
"contact": "0547-338835"

}, {
"type": "skype",
"contact": "egallinucci"

}]
}

Polyglot persistence

From Big Data to Data Platform

Each DB contains one or more column families (corresponding to tables)

Each column family contains a list of rows in the form of a key-value pair
▪ Key: unique string in the column family

▪ Value: a set of columns

Each column is a key-value pair itself
▪ Key: unique string in the row

▪ Value: simple or complex (supercolumn)

With respect to the relational model:
▪ Rows specify only the columns for which

a value exists

▪ Particularly suited for sparse matrixes

▪ Timestamps can be used to defines versions of column values

NoSQL databases: wide-column

Polyglot persistence

From Big Data to Data Platform

Each DB contains one or more graphs

Each graph contains vertices and arcs
▪ Vertices: usually represent real-world entities

▪ E.g.: people, organizations, web pages, workstations, cells, books, etc.

▪ Arcs: represent directed relationships between the vertices

▪ E.g.: friendship, work relationship, hyperlink, ethernet links, copyright, etc.

▪ Vertices and arcs are described by properties

▪ Arcs are stored as physical pointers

Most known specializations:
▪ Reticular data model

▪ Parent-child or owner-member relationships

▪ Triplestore

▪ Subject-predicate-object relationships (e.g., RDF)

NoSQL databases: graph

Polyglot persistence

From Big Data to Data Platform

Data modelling

Key-value, document and wide column are called aggregate-oriented
▪ Aggregate = key-value pair, document, row (respectively)

▪ The aggregate is the atomic block (no guarantees for multi-aggregate operations)

Based on the concept of encapsulation
▪ Pro: avoid joins as much as possible → achieve high scalability

▪ Con: data denormalization → potential inconsistencies in the data

▪ Query-driven modeling

The graph data model is intrinsically different from the others
▪ Focused on the relationships rather than on the entities per-se

▪ Limited scalability: it is often impossible to shard a graph on several machines without
"cutting" several arcs (i.e. having several cross-machine links)

▪ Batch cross-machine queries: don’t follow relationships one by one, but "group them" to make less
requests

▪ Limit the depth of cross-machine node searches

▪ Data-driven modeling

Polyglot persistence

From Big Data to Data Platform

Typical use case: customers, orders and products

Data modelling

Polyglot persistence

From Big Data to Data Platform

Relational data modelling

Polyglot persistence

From Big Data to Data Platform

NoSQL data modelling (graph)

IDs are implictly handled

Different edge colors
imply different edge types

name:
Martin

CardN: 477
txnId:….

name:
Fanta

name:
Cola

street:9th
city:NewYork

state:NewYork
code:10001

CardN: 457
txnId:….

street:Adam
city:Chicago
state:illinois
code:60007

price:14,4

price:12,4

Polyglot persistence

From Big Data to Data Platform

key value

cust-1:name Martin

cust-1:adrs [
{"street":"Adam", "city":"Chicago", "state":"Illinois", "code":60007},
{"street":"9th", "city":"NewYork", "state":"NewYork", "code":10001}

]

cust-1:ord-99 {
"orderpayments": [

{"card":477, "billadrs":
{"street":"Adam", "city":"Chicago", "state":"illinois", "code":60007} },

{"card":457, "billadrs":
{"street":"9th", "city":"NewYork", "state":"NewYork", "code":10001}

],
"products": [

{"id":1, "name":"Cola", "price":12.4},
{"id":2, "name":"Fanta", "price":14.4}

],
"shipAdrs": {"street":"9th", "city":"NewYork", "state":"NewYork", code":10001}

}

NoSQL data modelling (kv)

key value

p-1:name Cola

p-2:name Fanta

Customer collection Product collection

Polyglot persistence

From Big Data to Data Platform

NoSQL data modelling (document)

{
"_id": 1,
"name": "Martin",
"adrs": [

{"street":"Adam", "city":"Chicago", "state":"illinois", "code":60007},
{"street":"9th", "city":"NewYork", "state":"NewYork", "code":10001}

],
"orders": [{

"orderpayments":[
{"card":477, "billadrs": {"street":"Adam", "city":"Chicago", "state":"illinois", "code":60007}},
{"card":457, "billadrs": {"street":"9th", "city":"NewYork", "state":"NewYork", "code":10001}}

],
"products":[

{"id":1, "name":"Cola", "price":12.4},
{"id":2, "name":"Fanta", "price":14.4}

],
"shipAdrs": {"street":"9th", "city":"NewYork", "state":"NewYork", "code":10001}

}]
}

{
"_id":1,
"name":"Cola",
"price":12.4

}

Customer collection Product collection

{
"_id":1,
"name":"Fanta",
"price":14.4

}

Polyglot persistence

From Big Data to Data Platform

NoSQL data modelling (document)

{
"_id": 1,
"name": "Martin",
"adrs": [

{"street":"Adam", "city":"Chicago", "state":"illinois", "code":60007},
{"street":"9th", "city":"NewYork", "state":"NewYork", "code":10001}

]
}

{
"_id": 1,
"customer":1,
"orderpayments":[

{"card":477, "billadrs":{"street":"Adam", "city":"Chicago", "state":"illinois", "code":60007}},
{"card":457, "billadrs":{"street":"9th", "city":"NewYork", "state":"NewYork", "code":10001}}

],
"products": [

{"id":1, "name":"Cola", "price":12.4},
{"id":2, "name":"Fanta", "price":14.4}

],
"shipAdrs": {"street":"9th", "city":"NewYork", "state":"NewYork", "code":10001}

}

{
"_id":1,
"name":"Cola",
"price":12.4

}

Customer

collection

Product

collection

{
"_id":1,
"name":"Fanta",
"price":14.4

}

Order

collection

Polyglot persistence

From Big Data to Data Platform

NoSQL data modelling (wide-column)

Ord CustName Pepsi Cola Fanta …

1 Martin 12.4 14.4

2 … … …

Ord OrderPayments

1

2 …

Card Steet City State Code

477 9th NewYork NewYork 10001

457 Adam Chicago Illinois 60007

Order table > Order details column family

Order table > Order payments column family

Polyglot persistence

From Big Data to Data Platform

NoSQL data modelling

The aggregate term comes from Domain-Driven Design
▪ An aggregate is a group of tightly coupled objects to be handled as a block

▪ Aggregates are the basic unit for data manipulation and consistency management

Advantages
▪ Can be distributed trivially

▪ Data the should be used together (e.g., orders and details) are stored together

▪ Facilitate the developer's job

▪ By surpassing the impedance mismatch problem

Disadvantages
▪ No design strategy exists for aggregates

▪ It only depends on how they are meant to be used

▪ Can optimize only a limited set of queries

▪ Data denormalization → possible inconsistencies

RDBMSs are agnostic from this point of view

Polyglot persistence

From Big Data to Data Platform

Polyglot persistence

To each application the appropriate DBMS

Polyglot persistence

From Big Data to Data Platform

Polyglot persistence

To each application the appropriate DBMS - works well for OLTP

What about OLAP?

OLAP application

Polyglot persistence

From Big Data to Data Platform

Polyglot persistence: main challenges

Data model heterogeneity
▪ Support multiple models in the same database

▪ Or integrate data from different databases using different query languages

Schema heterogeneity
▪ Inter-collection: different records in different collections have different schemas

▪ Not a new problem: think federated databases, corporate mergers, etc.

▪ Intra-collection: different records in the same collection have different schemas

▪ Emerged with NoSQL databases

Data inconsistency
▪ Reconcile inconsistent versions of the same data (inter- or intra-collection)

Enrico Gallinucci – University of Bologna 145

From Big Data to Data Platform

Data model heterogeneity

Enrico Gallinucci – University of Bologna 146

From Big Data to Data Platform

Basic solutions

Some DBMSs offer multi-model support
▪ Extended RDBMSs

▪ KV implementable as a table with two fields: a string key, and a blob value

▪ Cypher query language on top of a relational implementation of a graph

▪ Hstore data type in PostgreSQL for wide-column-like implementation

▪ Scalabilty issue remains

▪ Multi-model NoSQL DBMSs

▪ ArangoDB, OrientDB

▪ Support all NoSQL data models, but not the relational one

Some approaches suggest strategies to model everything within RDBMSs
▪ DiScala, M., Abadi, D.J.: Automatic generation of normalized relational schemas from nested key-value data.

In: 2016 ACM SIGMOD Int. Conf. on Management of Data, pp. 295-310. ACM (2016)

▪ Tahara, D., Diamond, T., Abadi, D.J.: Sinew: a SQL system for multi-structured data. In: 2014 ACM SIGMOD Int.

Conf. on Management of Data, pp. 815-826. ACM (2014)

Enrico Gallinucci – University of Bologna 147

DM heterogeneity

From Big Data to Data Platform

A taxonomy for distributed solutions

Federated database system
▪ Homogeneous data stores, exposes a single standard query interface

▪ Features a mediator-wrapper architecture, employs schema-mapping and entity-merging techniques
for integration of relational data

Polyglot system
▪ Homogeneous data stores, exposes multiple query interfaces

▪ Takes advantage of the semantic expressiveness of multiple interfaces (e.g., declarative, procedural)

Multistore system
▪ Heterogeneous data stores, exposes a single query interface

▪ Provides a unified querying layer by adopting ontologies and applying schema-mapping and entity-
resolution techniques

Polystore system
▪ Heterogeneous data stores, exposes multiple query interfaces

▪ Choose from a variety of query interfaces to seamlessly query data residing in multiple data stores

Enrico Gallinucci – University of Bologna 148

R. Tan, R. Chirkova, V. Gadepally and T. G. Mattson, "Enabling query processing across heterogeneous data models: A survey," 2017 IEEE
International Conference on Big Data (Big Data), 2017, pp. 3211-3220.

DM heterogeneity

From Big Data to Data Platform

Advanced solutions

Example of a polystore
▪ Island = a middleware application

to support a set of operations on
a given data model

▪ Shim = a wrapper to convert from
the island’s query language to the
target DB’s query language

Enrico Gallinucci – University of Bologna 149

Vijay Gadepally, Kyle O'Brien, Adam Dziedzic, Aaron J. Elmore, Jeremy Kepner, Samuel Madden, Tim Mattson, Jennie Rogers, Zuohao She, Michael
Stonebraker: Version 0.1 of the BigDAWG Polystore System. CoRR abs/1707.00721 (2017)

DM heterogeneity

From Big Data to Data Platform

Advanced solutions

Most notable multistore/polystore proposals
▪ BigDAWG

▪ Focus on the ability to “move” data from one DB to another to improve query efficiency

▪ V. Gadepally et al. Version 0.1 of the BigDAWG Polystore System. CoRR abs/1707.00721 (2017)

▪ Estocada

▪ Focus on taking advantage of possible (consistent) redundancy and previous query results

▪ R. Alotaibi et al. ESTOCADA: Towards Scalable Polystore Systems. Proc. VLDB Endow. 13(12): 2949-
2952 (2020)

▪ Awesome

▪ Focus on supporting common analytical functions

▪ S. Dasgupta. Analytics-driven data ingestion and derivation in the AWESOME polystore. IEEE BigData
2016: 2555-2564

▪ CloudMdsQL

▪ Focus on taking advantage of local data store native functionalities

▪ B. Kolev et al. CloudMdsQL: querying heterogeneous cloud data stores with a common language.
Distributed Parallel Databases 34(4): 463-503 (2016)

Enrico Gallinucci – University of Bologna 150

DM heterogeneity

From Big Data to Data Platform

Beyond data model heterogeneity

What else is there?

Entity resolution
▪ Every approach needs some kind of integrated knowledge

▪ Ample research from federated database systems

▪ Usually “out-of-scope”

Management of schema heterogeneity and data inconsistency
▪ Usually addressed as different problems in the literature

Enrico Gallinucci – University of Bologna 151

From Big Data to Data Platform

Schema heterogeneity

Heterogeneous data stored with variant schemata and structural forms
▪ Missing/additional attributes

▪ Different names/types of attributes

▪ Different nested structures

Two main problems
▪ Understand the data

▪ Query the data

Enrico Gallinucci – University of Bologna 152

From Big Data to Data Platform

Understanding the data

Early work on XML
▪ To deal with the widespread lack of DTDs and XSDs

▪ Extract regular expressions to described the content of elements in a set of XML documents

Recent work on JSON
▪ Concise view: a single representation for all schema variations

▪ Union of all attributes

▪ M. Klettke et al. Schema extraction and structural outlier detection for JSON-based NoSQL data stores.,
in: Proc. BTW, volume 2105, 2015, pp. 425-444.

▪ A skeleton as the smallest set of core attributes according to a frequency-based formula

▪ L. Wang et al. Schema management for document stores, Proc. VLDB Endowment 8 (2015) 922-933.

▪ Comprehensive view: multiple representations (a different schema for every document)
▪ D. S. Ruiz, et al. Inferring versioned schemas from NoSQL databases and its applications, in: Proc. ER,

2015, pp. 467-480.

▪ Schema profile: explain why there are different schemas
▪ Enrico Gallinucci et al. Schema profiling of document-oriented databases. Inf. Syst. 75: 13-25 (2018)

Enrico Gallinucci – University of Bologna 153

Schema heterogeneity

From Big Data to Data Platform

Schema profiling

Schema profiles explain
▪ What are the differences

between schemas

▪ When/why is one schema
used instead of the other

The problem of schema profiling is quite similar to a classification problem
▪ Classifiers are also used to describe the rules for assigning a class to an observation based on

the other observation features

▪ Based on the requirements collected from potential users, decision trees emerged as the
most adequate

Enrico Gallinucci – University of Bologna 154

SchemaID User Activity Weight Duration Repetitions

S1 Jack Run 108

S2 John Leg press 80 4 23

S1 Kate Walk 42

S3 John Push-ups 8 40

D
o
c
u
m

e
n
ts

/

O
b

s
e

rv
a

tio
n

s

Schema / Class

Schema heterogeneity

From Big Data to Data Platform

Schema profiling

The documents are the observations

The schemata are the classes

Schema heterogeneity

From Big Data to Data Platform

Schema profiling

Value-based

condition

Schema heterogeneity

From Big Data to Data Platform

Schema profiling

Value-based

condition

Schema-based

condition

Schema heterogeneity

From Big Data to Data Platform

Schema profiling

Value-based

condition

Schema-based

condition

Schema heterogeneity

From Big Data to Data Platform

Preliminary activities

Semi-structured interviews with 5 users
▪ Application domains: fitness equipment sales, software development

▪ Understand goals, requirements, visualization format

▪ Not one complete/correct dataset description

Definition of schema profile characteristics
▪ Explicativeness

▪ Precision

▪ Conciseness

Schema heterogeneity

From Big Data to Data Platform

Explicativeness

Value-based (VB) conditions are preferred to schema-based (SB) ones
▪ SB: acknowledge a difference between schemata

▪ VB: explain it in terms of the values taken by an attribute

The less SB conditions, the more explicativeness

Schema heterogeneity

From Big Data to Data Platform

Precision

A decision tree is precise if all the leaves are pure
▪ A leaf is pure if all its observations belong to the same class

▪ Leaf vj is pure if entropy(vj) = 0

Entropy is strictly related to precision
▪ Divisive approaches typically

stop only when the leaves
are all pure

probability of

schema s

within leaf vj

Pure Almost

pure

Not

pure
Pure

Schema heterogeneity

From Big Data to Data Platform

Precision and conciseness

Minimization of entropy often leads to splitting observations of the same
class among several leaves

▪ Entropy's sole focus is on node purity

▪ More frequent when
the number of classes is high

Typically, precision is more
important than readability

In schema profiling, this is a critical problem
▪ It conflicts with the conciseness requirement

Schema heterogeneity

From Big Data to Data Platform

Conciseness

A maximally concise schema profile is one where there is
a single rule for each schema

Schema entropy: inverts the original definition of entropy, relating it to the
purity of the schemata instead of the purity of the leaves

▪ Entropy:
a leaf is pure if
it contains only documents
with the same class

▪ Schema entropy:
a schema is pure if
all its documents
are in the same leaf

Schema heterogeneity

From Big Data to Data Platform

Conciseness

A maximally concise schema profile is one where there is
a single rule for each schema

Schema entropy: inverts the original definition of entropy, relating it to the
purity of the schemata instead of the purity of the leaves

▪ Entropy:
a leaf is pure if
it contains only documents
with the same class

▪ Schema entropy:
a schema is pure if
all its documents
are in the same leaf

Pure

Pure

Pure

Not pure

Schema heterogeneity

From Big Data to Data Platform

Schema profiling example

v1 v1 v2 v3 v4

s1 40 s1 40

s2 30 s2 30

s3 20 s3 20

s4 10 s4 10

v1 v2 v1 v2 v3

s1 40 s1 40

s2 30 s2 30

s3 20 s3 20

s4 10 s4 4 3 3

Starting situation

E = 1,85 (maximum)

SE = 0 (minimum)

E = 1,38

SE = 0

E = 0,46

SE = 0,16

Best outcome

E = 0

SE = 0

Schema heterogeneity

From Big Data to Data Platform

Schema profiling algorithm

Introduced the notion of schema entropy loss

Defined a criterion for comparing two splits in the decision tree

Schema heterogeneity

From Big Data to Data Platform

Querying the data

One thing is understanding the data, another thing is enabling querying over
heterogeneous data

What we need
▪ Integration techniques to solve schema heterogeneity and produce a global knowledge

▪ Query rewriting techniques to translate queries on the global knowledge to queries on the
actual schemas

(Focus on OLAP queries)

167

Schema heterogeneity

From Big Data to Data Platform

Integration techniques

Integration at the intensional level
▪ Schema matching and mapping

▪ A match is a correspondence between attributes

▪ A mapping is a function to explain the relationship between attributes

▪ E.g., S1.FullName = CONCAT(S2.FirstName, S2.LastName)

Integration at the extensional level
▪ Entity resolution (a.k.a. record linkage or duplicate detection)

▪ Identifying (or linking, or grouping) different records referring
to the same real-world entity

▪ Aims at removing redundancy and increasing conciseness

▪ Data fusion

▪ Fuse records on the same real-world entity into a single record and resolve possible conflicts

▪ Aims at increasing correctness of data

168

E. Rahm, P.A. Bernstein, A survey of approaches to automatic schema matching, VLDB J. 10 (4) (2001)

Mandreoli, F., & Montangero, M. (2019). Dealing with data heterogeneity in a data fusion perspective: models, methodologies, and algorithms.
In Data Handling in Science and Technology (Vol. 31, pp. 235-270). Elsevier.

Schema heterogeneity

From Big Data to Data Platform

OLAP querying

A first approach to OLAP on heterogeneous data

169

Gallinucci, E., Golfarelli, M., & Rizzi, S. (2019). Approximate OLAP of document-oriented databases: A variety-aware approach. Information
Systems, 85, 114-130.

Schema heterogeneity

From Big Data to Data Platform

OLAP querying

Some limitations
▪ Expensive querying

▪ Does not scale well with the number of schemas

▪ Expensive integration

▪ High levels of heterogeneity imply complex rewriting rules (requiring knowledge and time)

▪ Assuming to be always able to obtain a global schema is a bit pretentious

170

Schema heterogeneity

From Big Data to Data Platform

OLAP querying

Some limitations
▪ Expensive querying

▪ Does not scale well with the number of schemas

▪ Expensive integration

▪ High levels of heterogeneity imply complex rewriting rules (requiring knowledge and time)

▪ Assuming to be always able to obtain a global schema is a bit pretentious

▪ “One does not simply define a global schema”

171

Schema heterogeneity

From Big Data to Data Platform

New integration techniques

Replace the global schema with a dataspace
▪ A dataspace is a lightweight integration approach providing basic query expressive power on a

variety of data sources, bypassing the complexity of traditional integration approaches and
possibly returning best-effort or approximate answers

▪ Franklin, M., Halevy, A., & Maier, D. (2005). From databases to dataspaces: a new abstraction for
information management. ACM Sigmod Record, 34(4), 27-33.

Replace traditional integration with a pay-as-you-go approach
▪ The system incrementally understands and integrates the data over time by asking users to

confirm matches as the system runs

▪ Jeffery, S. R., Franklin, M. J., & Halevy, A. Y. (2008, June). Pay-as-you-go user feedback for
dataspace systems. In Proceedings of the 2008 ACM SIGMOD international conference on
Management of data (pp. 847-860).

172

Schema heterogeneity

From Big Data to Data Platform

New integration techniques

Introducing new concepts
▪ Features: univocal representation of a group of semantically equivalent attributes

▪ E.g., CustomerName = { S1.name, S2.fullname, S3.customer, S4.cName, … }

▪ Mapping functions must be defined/definable between every couple

▪ Entities: representation of a real-world entity

▪ E.g., customers, products, orders, etc.

The dataspace becomes an abstract view in terms of features and entities

173

Schema heterogeneity

From Big Data to Data Platform

New OLAP querying

What it looks like

174

Forresi, C., Gallinucci, E., Golfarelli, M., & Hamadou, H. B. (2021). A dataspace-based framework for OLAP analyses in a high-variety
multistore. The VLDB Journal, 30(6), 1017-1040.

Schema heterogeneity

From Big Data to Data Platform

New OLAP querying

Previous issues
▪ Expensive querying

▪ Schema heterogeneity solved at query time

▪ Requires complex - but feasible - algorithms

▪ Expensive integration

▪ Pay-as-you-go approach is quicker, iterative, and more flexible

▪ Dataspace is conceptual, untied to logical data modeling

Now we have a multistore dealing with multiple
data models and schema heterogeneity

175

Forresi, C., Gallinucci, E., Golfarelli, M., & Hamadou, H. B. (2021). A dataspace-based framework for OLAP analyses in a high-variety
multistore. The VLDB Journal, 30(6), 1017-1040.

Schema heterogeneity

From Big Data to Data Platform

Data inconsitency

Intra-collection
▪ Due to denormalized data modeling

Inter-collection
▪ Due to analytical data offloading

▪ To reduce costs and optimize performance, the historical depth of databases is kept limited

▪ After some years, data are offloaded to cheaper/bigger storages, e.g., cloud storages, data lakes

▪ Offloading implies a change of data model, a change of schema, and obviously an overlapping of
instances with the original data

▪ Due to multi-cloud architectures

▪ Enables the exploitation of data spread across different providers and architectures, all the while
overcoming data silos through data virtualization

▪ Typical in presence of many company branches

Solutions?
▪ Traditional ETL

▪ Solve inconsistencies on-the-fly

176

From Big Data to Data Platform

Data fusion

Merge operator
▪ Originally introduced as “full outer join merge”

▪ Naumann, F., Freytag, J. C., & Leser, U. (2004). Completeness of integrated information
sources. Information Systems, 29(7), 583-615.

▪ Aims to keep as much information as possible when joining the records of two schemas

▪ Avoid any loss of records

▪ Resolve mappings by providing
transcoded output

▪ Resolving conflicts whenever
necessary

177

Data inconsistency

From Big Data to Data Platform

Data fusion

Merge operator
▪ Originally introduced as “full outer join merge”

▪ Naumann, F., Freytag, J. C., & Leser, U. (2004). Completeness of integrated information
sources. Information Systems, 29(7), 583-615.

▪ Aims to keep as much information as possible when joining the records of two schemas

▪ Avoid any loss of records

▪ Resolve mappings by providing
transcoded output

▪ Resolving conflicts whenever
necessary

178

S
c
h

e
m

a

m
a

tc
h

in
g

Entity

linking

Data

fusion

Data inconsistency

From Big Data to Data Platform

Data fusion

Merge operator

179

Data inconsistency

From Big Data to Data Platform

On-the-fly data fusion

Merge operator in a query plan
▪ Take the data from heterogeneous

sources (in different colors)

▪ Extract records of the single entites
(e.g., customer, products)

▪ Merge each entity

▪ Join and produce the final result

Now we have a multistore
dealing with multiple data models,
schema heterogeneity, and data
inconsistency

▪ Are we done? Not yet!

180

Data inconsistency

From Big Data to Data Platform

On-the-fly data fusion

Main issue: performance
▪ Collections accessed more than once

▪ Most effort pulled to the middleware

What can we do about it?
▪ Exploit more the local DBMSs

▪ Exploit local data modelling

▪ Carry out multi-entity merges

Issues
▪ Several query plans could be devised

▪ Hard to find the most efficient one

181

From Big Data to Data Platform

Logical optimization

Logical rules to transform a query plan into a more efficent one
▪ Predicate push-down: applying selection predicates as close to the source as possible

▪ Not always feasible (e.g., in presence of inconsistent data)

▪ Column pruning: extracting the only attributes relevant for the query

▪ Not for granted when writing a custom query language

▪ Join sequence reordering: changing the order to do binary joins

▪ Not so easy when merges are involved as well

▪ Not so easy when data comes from different sources

182

Query optimization

From Big Data to Data Platform

Same query, several query plans

What is the most efficient solution?
▪ Single-entity merge and subsequent joins

▪ Nest relational data and multi-merge with documents

▪ Join relational data and multi-merge with flattened documents

Depends on several factors
▪ On the capabilities of each DBMS/middleware

▪ On the presence of indexes and statistics

▪ On the resources available to each DBMS/middleware

▪ On the number of records involved on each side

..which can change over time

183

Consistent representation

of customers, orders, and

orderlines

Query optimization

From Big Data to Data Platform

Cost modelling

Cost-based evaluation of different plans
▪ White-box cost modelling

▪ Associate theoretical formulas to each query operators, then build up the cost of a query by summing
the cost of each operation

▪ Cost can be determined in terms of disk I/O, CPU, network

▪ Requires an enormous effort to effectively model the many factors that contribute to query costs in a
complex and heterogeneous environment like a multistore

▪ Black-box cost modelling

▪ Hide the behavior of an execution engine within a black-box, where the known information is mostly
limited to the issued queries and the given response times

▪ Cost is determined in terms of time

▪ Easily adapts to evolving environments

▪ Suffers from cold-start

184

Query optimization

From Big Data to Data Platform

Cost modelling

White-box
cost modelling
example

185

Golfarelli, M. (2021, August). Optimizing Execution Plans in a Multistore. In Advances in Databases and Information Systems: 25th European
Conference, ADBIS 2021, Tartu, Estonia, August 24–26, 2021, Proceedings (Vol. 12843, p. 136). Springer Nature.

Query optimization

From Big Data to Data Platform

Cost modelling

Black-box
cost modelling
example

186

(work in progress)

Query optimization

From Big Data to Data Platform

Polyglot persistence - Conclusions

Two main issues
▪ Query performance

▪ Improving caching/indexing techniques

▪ Improving cost model effectiveness

▪ Data integration

▪ Improving effectiveness (ever-lasting direction)

▪ Improving efficiency on big data scales

▪ Reduce the number of comparison, introduce approximation

▪ Parallelize computation

▪ Exploit additional information (e.g., temporal entity resolution models)

▪ Human-in-the-loop (pay-as-you-go, crowdsourcing)

▪ Frictionless integration within a big data platform

▪ A metadata challenge that we explore tomorrow!

187

Mandreoli, F., & Montangero, M. (2019). Dealing with data heterogeneity in a data fusion perspective: models, methodologies, and algorithms. In Data
Handling in Science and Technology (Vol. 31, pp. 235-270). Elsevier.

